Fracture Fixation and Healing

The JVL researchers have investigated the effects several variables on fracture healing under carefully controlled laboratory conditions. For example, the difference between allowing axial interfragmentary motion alone or shear (sliding) motion on fracture healing has been studied. As another example, the effect of a step-off in the knee on cartilage pressures and healing was studied. For these studies, an in vivo model was designed and developed to accurately represent and simulate clinical conditions specific to tissue healing.


The following methods are routinely used for the evaluation of fracture healing and fixation:

  • Imaging, including x-rays and quantitative computerized tomography (qCT)
  • Biomechanical testing, using custom loading apparatuses and multi- axis load frames
  • Histological evaluation


The effects of blood supply on fracture healing has also been evaluated using in vivo models. A Laser Doppler flowmeter was used to measure in vivo blood flow at the fracture site throughout the fracture healing period.


  1. Silva M, Knutsen AR, Kalma JJ, Borkowski SL, Bernthal NM, Spencer HT, Sangiorgio SN, Ebramzadeh E. Biomechanical testing of pin configurations in supracondylar humeral fractures: the effect of medial column comminution. J Orthop Trauma. 2013 May;27(5):275-80. doi: 10.1097/BOT.0b013e31826fc05e. PubMed PMID: 22932754.
  2. Rajfer, R. A., Kilic, A., Neviaser, A. S., Schulte, L. M., Hlaing, S. M., Landeros, J., . . . Park, S. (2017). Enhancement of fracture healing in the rat, modulated by compounds that stimulate inducible nitric oxide synthase. Bone & Joint Research,6(2), 90-97.
  3. Amorosa, L. F., Lee, C. H., Aydemir, A. B., Nizami, S., Hsu, A., Patel, N. R., Park, S.H., & Mao, J. J. (2013). Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study. International Journal of Nanomedicine, 8, 1637.
  4. Silva M, Ebramzadeh E. Is the "Appropriate Use Criteria" for Type IISupracondylar Humerus Fractures Really Appropriate? J Pediatr Orthop. 2018 Jun 30. doi: 10.1097/BPO.0000000000001225. [Epub ahead of print] PubMed PMID: 29965931.
  5. Silva M, Sadlik G, Avoian T, Ebramzadeh E. A Removable Long-arm Soft Cast to Treat Nondisplaced Pediatric Elbow Fractures: A Randomized, Controlled Trial. J Pediatr Orthop. 2018 Apr;38(4):223-229. doi: 10.1097/BPO.0000000000000802. PubMed PMID: 29517983.
  6. Silva M, Avoian T, Warnock RS, Sadlik G, Ebramzadeh E. It is not just comfort: waterproof casting increases physical functioning in children with minimally angulated distal radius fractures. J Pediatr Orthop B. 2017 Sep;26(5):417-423. doi: 10.1097/BPB.0000000000000372. PubMed PMID: 27496823.
  7. Kwak-Lee J, Kim R, Ebramzadeh E, Silva M. Is medial pin use safe for treating pediatric supracondylar humerus fractures? J Orthop Trauma. 2014 Apr;28(4):216-21. doi: 10.1097/BOT.0b013e3182a66efb. PubMed PMID: 24045433.
  8. Barad JH, Kim RS, Ebramzadeh E, Silva M. Range of motion of the healthy pediatric elbow: cross-sectional study of a large population. J Pediatr Orthop B. 2013 Mar;22(2):117-22. doi: 10.1097/BPB.0b013e32835c2be9. PubMed PMID: 23238025.
  9. Park SH, Silva M. Intermittent pneumatic soft tissue compression: Changes in periosteal and medullary canal blood flow. J Orthop Res. 2008 Apr;26(4):570-7. doi: 10.1002/jor.20509. PubMed PMID: 17985392.
  10. Park SH. "Shear movement at the fracture site delays healing in a diaphyseal fracture model" by Peter Augat, Johannes Buger, Sandra Schorlemmer, Thomas Henke, Manfred Peraus, Lutz Claes [J Orthop Res 2003;21:1011-17]. J Orthop Res. 2004 Sep;22(5):1156-7; author reply 1158-9. doi: 10.1016/j.orthres.2004.02.003. PubMed PMID: 15304293.
  11. Park SH, Silva M. Neuromuscular electrical stimulation enhances fracture healing: results of an animal model. J Orthop Res. 2004 Mar;22(2):382-7. doi: 10.1016/j.orthres.2003.08.007. PubMed PMID: 15013100.
  12. Park SH, Silva M. Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am. 2003 Aug;85-A(8):1446-53. PubMed PMID: 12925623.
  13. Park SH, O'Connor KM, McKellop H. Interaction between active motion and exogenous transforming growth factor Beta during tibial fracture repair. J Orthop Trauma. 2003 Jan;17(1):2-10. PubMed PMID: 12499962.
  14. Park SH, Silva M, Bahk WJ, McKellop H, Lieberman JR. Effect of repeated irrigation and debridement on fracture healing in an animal model. J Orthop Res. 2002 Nov;20(6):1197-204. doi: 10.1016/S0736-0266(02)00072-4. PubMed PMID: 12472229.
  15. Park, S. H., O'connor, K., Sung, R., McKellop, H., & Sarmiento, A. (1999). Comparison of healing process in open osteotomy model and closed fracture model. Journal of Orthopaedic Trauma, 13(2), 114-120.
  16. Park, S. H., O'Connor, K. I. M., McKellop, H., & Sarmiento, A. (1998). The influence of active shear or compressive motion on fracture-healing. Journal of Bone and Joint Surgery, 80(6), 868-78.
  17. Sarmiento, A., McKellop, H. A., Llinas, A., Park, S. H., Lu, B., Stetson, W., & Rao, R. (1996). Effect of loading and fracture motions on diaphyseal tibial fractures. Journal of Orthopaedic Research, 14(1), 80-84.
  18. Park, S. H., Cassim, A., Llinas, A., McKellop, H. A., & Sarmiento, A. (1994). Technique for producing controlled closed fractures in a rabbit model. Journal of Orthopaedic Research, 12(5), 732-736.